• 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2020-03
  • 2020-07
  • 2020-08
  • br Acknowledgement br The authors


    The authors acknowledge financial support from the EC Marie Curie Actions, AIDPATH project (Contract No.612471).
    Supplementary material
    Abdelsamea, M. M., & Tsaftaris, S. A. (2013). Active contour model driven by glob-ally signed region pressure force. In Proceedings of the 18th IEEE international conference on digital signal processing (DSP) (pp. 1–6).
    Bianconi, F., Álvarez-Larrán, A., & Fernández, A. (2015). Discrimination between tu-mour epithelium and stroma via perception-based features. Neurocomputing, 154, 119–126.
    Caicedo, J. C., González, F. A., & Romero, E. (2011). Content-based histopathology image retrieval using a kernel-based semantic annotation framework. Journal of Biomedical Informatics, 44(4), 519–528.
    Chang, H., Borowsky, A., Spellman, P., & Parvin, B. (2013). Classification of tumor his-tology via morphometric context. In Proceedings of the IEEE conference on com-puter vision and pattern recognition (pp. Artesunate 2203–2210).
    Doyle, S., Feldman, M. D., Shih, N., Tomaszewski, J. E., & Madabhushi, A. (2012). Cascaded discrimination of normal, abnormal, and confounder Artesunate in histopathology: Gleason grading of prostate cancer.. BMC Bioinformatics, 13, 282.
    Madabhushi, A., & Lee, G. (2016). Image analysis and machine learning in digital pathology: Challenges and opportunities. Medical Image Analysis, 33, 170–175.
    Mahmoud-Ghoneim, D. (2011). Optimizing automated characterization of liver fi-brosis histological images by investigating color spaces at different resolutions. Theoretical Biology & Medical Modelling, 8, 25.
    Mattfeldt, T., Grahovac, P., & Lück, S. (2013). Multiclass pattern recognition of the gleason score of prostatic carcinomas using methods of spatial statistics. Image Analysis & Stereology, 32(3), 155–165.
    Ramesh, N., Dangott, B., Salama, M. E., Tasdizen, T., et al. (2012). Isolation and two-step classification of normal white blood cells in peripheral blood smears. Journal of Pathology Informatics, 3(1), 13.
    Samsi, S., Krishnamurthy, A. K., & Gurcan, M. N. (2012). An e cient computational framework for the analysis of whole slide images: Application to follicular lym-phoma immunohistochemistry. Journal of Computational Science, 3(5), 269–279.
    Shu, J., Dolman, G., Duan, J., Qiu, G., & Ilyas, M. (2016). Statistical colour models: An automated digital image analysis method for quantification of histological biomarkers. Biomedical Engineering Online, 15(1), 46.
    Sirinukunwattana, K., Raza, S. E. A., Tsang, Y.-W., Snead, D., Cree, I., & Ra-jpoot, N. (2015). A spatially constrained deep learning framework for detection of epithelial tumor nuclei in cancer histology images. In International workshop on patch-based techniques in medical imaging (pp. 154–162). Springer.
    Sirinukunwattana, K., Snead, D. R., & Rajpoot, N. M. (2015). A novel texture descrip-tor for detection of glandular structures in colon histology images. SPIE medical imaging. International Society for Optics and Photonics. 94200S–94200S.
    Zhou, Y., Chang, H., Barner, K., Spellman, P., & Parvin, B. (2014). Classification of his-tology sections via multispectral convolutional sparse coding. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3081–3088).
    Reyna Aguilar Quispe DDS, MSc ,
    Ana Carolina Cunha Rodrigues DDS ,
    Ana Maria Greff Buaes DDS ,
    Ana Lucia Alvares Capelozza DDS, MSc, PhD ,
    Cassia« Maria Fischer Rubira DDS, MSc, PhD ,
    Paulo Sergio« da Silva Santos DDS, MSc, PhD
    To appear in: 
    Oral Surg Oral Med Oral Pathol Oral Radiol
    Received date:
    Revised date: